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1. What we’ve done

Publications The long paper we jointly submitted to the December Advances in Cognitive Sys-
tems meeting: On the Representation of Inferences and their Lexicalizations was accepted. McDon-
ald’s presentation at the ACS meeting in December was well received. There was particular interest
in our use of incremental, word-by-word analysis and its constraint from the context provided by the
situation. A number of people gave us recommentations for issues that we should address in future
versions of the paper. We are looking into possible venues for it once we have completed enough
research to cash out the caveats in that version of the work and prepare a journal-length treatment.

Because it is the clearest representation to date of how our thinking has evolved, a copy of that
paper is included with this quarterly report as an appendix.

Presentations Professor Pustejovsky gave two talks related to C3 this period at the Institute of
Cognitive Science at the University of Colorado Boulder, October 15 and 16, 2013 with the title
The Role of Event-based Representations and Reasoning in Language.

Abstract. The notion of event has long been central for both modeling the semantics of natural
language as well as reasoning in goal-driven tasks in artificial intelligence. With the maturation of
statistically informed NLP techniques and the increased availability of large linguistically oriented
lexical resources, it is time to revisit our theoretical and computational models for events in natural
language. In this talk, I outline the challenges for a unified theory of event structure. The demands
on such a theory require it to both facilitate the systematic mapping from semantic forms to syntactic
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representations and support event-based inferences in texts. What emerges is a framework that
represents a situation and its participants in terms of subevents, modeled dynamically through time
and space. In addition, the theory must identify events as part of larger scenarios and scripts. I
discuss recent work in this direction and some models unifiying both representational levels for
event-based reasoning.

The talk will be divided into two parts: in the first, I focus on the general role of events in
AI, NLP, and linguistics, examining what questions have been solved and what issues are still out-
standing. Events are the means by which we encode situations and changes in our world. We will
distinguish two modes of event description: (a) event-based (from the perspective of the process),
and (b) participant-based (from the perspective of the entity). Then, we look at how events are
structured within larger narratives and scripts, reflecting conventionalized patterns of behavior and
causal and coherence relations within a discourse.

Related and coordinated activities We have been busy working to advertise the research and
products derived from this funding. This includes two proposed activities for Summer 2014:

• Deep Semantic Annotation with Shallow Methods; James Pustejovsky (with Anna Rumshisky),
LREC Tutorial, Reykjavik, Iceland, May 26, 2014.

• Computational Models of Events; James Pustejovsky, Summer course at NASSLLI 2014,
University of Maryland, College Park, June 23-27, 2014.

People We continue to work with the SIFT staff and Brandeis graduate students reported in the
last quarterly report. Looking ahead, Pustejovsky will on sabbattical for the spring semester. This
release from teaching duties will dramatically increase the amount of research we will be able to
do.

2. What we’re planning to do

Our agenda remains much the same as we described in our previous quarterly report: expanding
our coverage and deepening our model for the next cycle of evaluating the effectiveness of the
computation model against our theory. Our work in this quarter in theory-development portion of
the cycle. The next quarter or quarters will focus on building and testing, while starting new lines
of theory.

ISR Corpus We need to establish whether the scheme we implemented for just the one case will
hold up when we enlarge the corpus it works from. To that end we will continue to explore the
ISR1 chat corpus that our ACS paper’s example came from. Given its small set of events and an
vocabulary, we should, in principle, be able to model it thoroughly with just the limited resources
we have.

1. Intelligence, Surveillance, and Reconnaissance
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Ontology design Our treatment of the content and layout of an ontology (the system’s background
knowledge) is unconventional. We need to observe how this computational treatment of ontology-
ical knowledge performs as we work through the extension of C3’s coverage to the rest of the ISR
corpus.

The driver behind the current design was a small sample text that was a clear example of a gap
that requires inference to fill in. One of the things we want to determine is whether the issues raised
by that sample are normal: are they typical in the full chat corpus or did we just chance to hit on
the one case where an inferential bridge was required. Should it turn out to be unusual, or should
the gaps that we do find lend themselves to different inferential machinery, then we will need to
re-examine our assumptions and reformulate the computational properties of our ontology.

Anticipated writing We are on track for the March deadline to submit a paper to next year’s
International Generation Conference in June. Right now our inferential processes are lexically
driven, which is appropriate for the bottom-up formulation of a situation undertaken by the listener
to reconstruct the information that was left out by the speaker as they generated the text. But
our decades of experience with language generation strongly suggest that what is efficient in one
direction of language–situation processing is seldom efficient or even effective in the other.

Working out what it comes to in C3 for a speaker to be aware of the inferences that are likely
to be available to their audience is not at all obvious at this point. The dual perspective we develop
in answering could well change our sense of what lexically-triggered inferences in a situation really
are.

3. Research questions

Our principal focus this past quarter was deepening our understanding of the technical issues that
were the focus of our ACS paper. We took the partially-formed ideas that we had formulated for
our proposal and presented at the June review meeting and made them concrete enough to develop a
preliminary implementation, and from that worked out the technical ideas clearly enough to describe
as part of clarifying the originally submitted version of the paper. That work exposed areas of
possible weakness that we need to investigate.

3.1 Do we have enough machinery?

In the present treatment, a situation consists of just four kinds of things.

• The individuals referred to in the text. That is the people, artifacts, events, times locations, etc.
• A set of functional variables that keep track of the discourse and sentential roles of these indi-

viduals as the text progresses.
• The attributes of these individuals and the relationships among them, uniformly represented as

propositions.
• The latent predicates that are introduced into the situation to represent the potential relationships

that individuals might enter into.

3



OCTOBER–DECEMBER 2013

Given our premise that the speed and effortless accuracy of people implies the use of specialized
mechanisms and representations tailored to the task, it is likely that we will want to expand the
scope of our computational model.

Affordances At present the only representation of what is possible is a latent variable – a predicate
that represents a potential relationship. These are passive devices that wait for something to trigger
them. This does not reflect what seems the natural interpretation of an affordance as potential
action, such as unlocking a door provides the affordance of opening it and allowing individuals to
pass through the resulting aperture.

It seems likely that affordances should be given an explicit representation that directly reflects
the idea of an affordance and lets us give them computational properties tailored to the idea of
exploring potential connections while at the same time restricting the scope of what affordances are
permitted to do. One possibility is permitting a limited kind of forward inferencing or search to
identify relationships that are only implicit in the language but reflect actions that became possible
once some change in the world occured.

Script and presumed actions Similarly we do not have a tailored representation of convention
activities: scripts. The utility of a script from the point of view of facilitating inference is that they
establish what actions can be assumed to have happened given just one or two explicitly expressed
activities from the script. If people are said to have left a restaurant you can assume that they have
paid their check. Only deviations from a normal sequence of actions will be salient enough for
someone to mention them.

3.2 Mapping words to predicates

Swapping word senses At this point, our computational model implicitly assumes words have
just a single interpretation that can be identified with (mapped to) a corresponding predicate. This
is what we might term a topic swapping conception of semantics, where knowledge of the ongoing
topic (finance, soil erosion) biases the interpretation of words like bank that are ambiguous outside
of a specific context.

Mechanically, given a larger window of text, the semantic grammar we use is sufficient to select
the correct interpretation. If the parser either waits until the next word as been identified or projects
from the established left prefix, the semantic categories of parse tree create a context where only the
correct interpetation (word sense) will be semantically consistent. However, the psycholinguistic
results indicate that people have identified a content word’s intended sense before they have fin-
ished hearing it. This can be taken as evidence the alternative sense are simply not available to the
pragmatic (situational) levels of representation.

Words activate latent predicates In C3, every (disambiguated) word corresponds to predicate.
This provides us with a powerful inference machanism for making connections across a large span
of text. Consider this example from our ACS paper, part of the lead sentence in the January 18th,
2006 Aljazeera news article about the first bird flu victim in Iraq.

“. . . a 14-year-old girl died in the Kurdish city of Sulaimaniya . . . ”
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Part of the packet that the word girl introduces into the situation is a set of latent predicates. What
predicates are introduced depends on what we know about unary predicate girl, which is a matter
of what ontological categories back up that predicate. As a ‘living thing’, the individual that repre-
sents the girl, she has at least predicates for her age, and the events of her birth and death. Two of
those are bound to values from the text and become propositions in the situation model.

But we know a great deal more than that, and a representation of that knowledge is activated in
the situation in anticipation of learning more about the girl and adding additional propositions. This
reprepresentation takes the form of a potentialy very large set of latent predicates that have been
curried to mark that it they become bound they will be relationships to this particular individual girl,
such as predicates as part of a human social society, and given the content of that text predicates
that denote relationships as a minority within a larger political entity (Kurdish).

Three sentences later in that Aljazeera story is a this sentence.

“The rest of the family is in good health . . . ”

As we illustrated in our ACS presentation, the word family corresponds to as predicate that is already
present in the situation, having been introduced as one of the latent predicates of girl. This gives us
the immediate knowledge that this reference is to the girl’s family.

Our worry is that this account may be too simplistic. One the one hand it is reasonable to
expect that without undue effort we can enumerate all of the relationships that are possible given a
particular semantic field, such as the family. But suppose there had been two girls, each with their
latent predicates. Similarly there are many sorts of ‘families’ besides the human ones. How do we
ensure that when C3 reads family that it picks out the intended predicate?

These are potential problems that we have to work through. It is likely that the hypothetical
case of multiple girls will simply force us to pay more attention to the local phrasing. The definite
reference in “the family” picks out one individual., If there was more than girl and the phrase was
“their families” we would create a set from the girls and make the connection via fairly conventional
anaphoric reasoning. These are obviously reasonable steps, we simply have yet to take them.

The potential problem of the multiple senses of family, with different meanings reflected by
different sets of categories in the ontology (presumably with some in common), might simply fall
out from the fact that our representation of a predicate incorporates the category that motivates it.
Alternatively the simplest treatment might turn out to be swapping out whole sets of categories
from the ontology as part of the topic swapping process that we need to ensure that words are
unambiguous before we read them (present in just the semantic field that is presently active).

Publication References

McDonald, David D. and James Pustejovsky. On the Representation of Inferences and their Lexi-
calizations, proceedings of Advances in Cognitive Systems, Baltimore, December 12-14, 2013,
pp. 135-152.
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On the Representation of Inferences and their Lexicalization

David McDonald DMCDONALD@SIFT.NET

Smart Information Flow Technologies, 14 Brantwood Road, Arlington, MA 02476 USA

James Pustejovsky JAMESP@CS.BRANDEIS.EDU

Department of Computer Science, Brandeis University, 415 South Street, Waltham, MA 02453 USA

Abstract
We have recently begun a project to develop a more effective and efficient way to marshal inferences
from background knowledge to facilitate deep natural language understanding. The meaning of a
word is taken to be the entities, predications, presuppositions, and potential inferences that it adds
to an ongoing situation. As words compose, the minimal model in the situation evolves to limit and
direct inference. At this point we have developed our computational architecture and implemented
it on real text. Our focus has been on proving the feasibility of our design.

1. Introduction

1.1 Gaps

One of the central facts about language is that speakers regularly omit information that their listeners
fill in without conscious effort. — they leave gaps. Examples of such gaps are everywhere. Consider
the following text.1

“. . . a 14-year-old girl died in the Kurdish city of Sulaimaniya . . . The rest of the family
is in good health . . . ”

We effortlessly know that this is the family of the girl, even across the three intervening sentences in
the full text. The writer could have said “the girl’s family” but didn’t have to, knowing that readers
would supply this information though inference.

Gaps like these are a pervasive and essential component of language use: speakers appreciate
what their listeners will infer from their knowledge of the world (e.g., children are presumed to
have families) and from the context that they share. This is one of the points of Grice’s Maxim of
Quality: do not be more informative than required (Grice, 1975). It is central part of what makes a
text cohesive.

The question is how this is done. How is our extensive body of background knowledge and
inference organized? How do we deploy it so effortlessly? That is the subject of this paper, where
we lay out our initial results from a recently initiated project into this question.

1. This passage is excerpted from a January 18th, 2006 Aljazeera news article about the first bird flu victim in Iraq.

c© 2013 Cognitive Systems Foundation. All rights reserved.
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1.2 Speed implies structure

Psycholinguists have known for decades that language comprehension is immediate and incremental
and works on all levels at once (syntactic, semantic, pragmatic, discourse) (Marslen-Wilson, 1973).
People interpret utterances word by word without noticeable delay. Recent work has shown that an
event verb will activate its prototypical objects in just the time it takes to hear the verb and that this
will influence the interpretation of later syntactic structures (Matsuki et al., 2011).

When cognitive psychologists explain this ability, they talk about people having schemas that
organize their knowledge of ordinary things and events (Bartlett, 1932). This resonates with the
ideas and mechanisms of frames and scripts that were developed in Artificial Intelligence more
than thirty years ago (Minsky, 1975; Schank & Abelson, 1977). But in areas of research such
as neuroscience (Speer et al., 2009), or cognitive linguistics (Bergen, Chang, & Narayan, 2004),
what a schema consists of or what it means, computationally, to ’activate’ a schema and ’provide’
expectations has different answers — it is usually not the point of their research. It is, however,
the point of our own research. This paper describes our computational account of what a schema
is, how they are activated, their mechanisms for controlling interpretation, and how they provide
expectations, implicatures, and defaults.

1.3 It takes knowledge

The knowledge-rich approaches of the 1970s and 1980s were abandoned by main-stream NLP re-
search as part of the move to ‘empirical’ approaches that were made possible by the construction of
large machine-readable text corpora and advances in machine learning (Church & Mercer, 1993).
At about the same time, a shift to ever-larger projects increased the salience of the “knowledge ac-
quisition problem” — that without a vast amount of knowledge, systems will be too brittle and will
fail on anything outside of what has been expressly modeled. As a result people working in NLP
use techniques that stop with just a description of what a text says and has none of the active, “fill
in the gap” inferential capability that is critical for full deep language understanding.

We agree that knowledge modeling is difficult. It is intellectually challenging to come up with
conceptualizations that have the requisite sensitivity to context, capacity to compose, and associ-
ated expectations for actions and inference. But this background knowledge is absolutely needed if
automated systems are to learn from reading or fully understand our instructions. We are not alone
in this belief, as witnessed by the steady body of work by people such as Len Schubert (Durme,
Michalak, & Schubert, 2009) and Jerry Hobbs (Montazeri & Hobbs, 2011; Hobbs & Gordon, forth-
coming). Moreover there are now significant knowledge stores to draw on. In addition to Schubert’s
KNEXT there is the MIT Media Lab’s ConceptNet (Speer, Havasi, & Lieberman, 2008), FrameNet
(Fillmore & Baker, 2001), and of course the long-term work of the CYC project (Guha & Lenat,
1993).

We do not presume to do this by ourselves. Once our designs have been refined through testing
on a realistic corpus against the series of prototypes we will implement, we intend to formalize our
knowledge requirements and look for assistance from like-minded people in the language-centric
part of the knowledge-representation community for follow-on collaborations.
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1.4 What we are actually doing

The focus of our work is on how inferences are marshaled from background knowledge when we
use language. While it has old roots, our conception of how it is done is new. In order to focus
our efforts, we have pushed to one side a set of issues that we know are important parts of any
operational solution, but which now would just be a distraction.

• We are working from a corpus of written texts, not speech.
• We are not doing dialogue.
• We are not currently trying to acquire background knowledge automatically.

What we are doing instead is working out how highly efficient, lexically triggered inference and
expectation can even be done at all. We are deliberately not yet invested in a choice of ontology
or working with a large knowledge store. We think it is more important to test and refine our
computational machinery before drawing on the work listed above and working at a proper scale.

In the next section we lay out the elements of our architecture, and illustrate them in §3 with the
example that we drew on when formulating our design but have not implemented. That is followed
in §4 by a smaller but thoroughly implemented example, that we walk through in detail.

2. Representation: Situations, Predicates, and Packets

Every cognitive architecture has a notion of working context, some means of defining and delimiting
what it will attend to and what it can be aware of at any given moment. Every architecture also has
a control structure, a policy or mechanism that dictates what actions it will take and in what order.

In our architecture – C32 – our working context is a structured situation, where what we mean by
‘situation’ is close to what it means in situation semantics (Barwise & Perry, 1983; Devlin, 2006).
We use a data-directed, event-driven control structure adapting the techniques used in our language
analysis engine Sparser.3 We are focusing on the notion of a “situation type”: a reoccurring pattern
of events and participants. The situation semantics literature has instead focused on situations as a
device that can provide a denotation for a complex of events and participants — a static representa-
tion similar to Schubert’s notion of an episode in his episodic logic (Schubert & Hwang, 2000). The
populated situation that accompanies an ongoing discourse supplies the information that is latent
in what is perceived, i.e.., in the words of a text. Situations hold the general world knowledge that
perception unconsciously brings to mind. They supply the bulk of the iceberg of information that
lies below the tip that is perceivable.

At its base, the situation holds representations of the entities, events, and predications that have
been mentioned in the ongoing discourse. It provides a minimal model, consisting of a set of
typed structured objects. For example, if the text is “a 14-year-old girl” then when that phrase has
been read, the situation contains representations of the girl, the age, and of the fact that the girl is
described as being that age.

2. The name C3 stands for “the Compositional Construction of Context”.
3. The Sparser ’sparser parser’ is a high precision information extraction system. See (McDonald, 1992; McDonald,

1996). We are using it in in a new configuration designed specifically for C3.
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2.1 Lexicalized Pragmatics

In a lexicalized grammar, the terminals of the rules are specific words instead of lexical categories
such as proper noun or transitive verb. We propose to lexicalize meaning and inference – to estab-
lish it directly from the incremental composition of the meaning of the words in a text without an
intervening logical form.

The meaning of words, phrases, and meaning-bearing constructions is defined in terms of the set
of propositions, relations, or potential inferences they convey. Situations are created dynamically
by composing these packets of content and inference as the words of a text are scanned. Most
packets correspond to small individual categories or inferences: e.g., the affordances of a cup as
a container, the consequences of a process being canceled. Packets are small because they are
designed to compose with other packets to collectively define the suite of inferences that are active
in a situation. Packets are activated singly or in groups according to what work they are designed
to do and how and where they are triggered. The notion of packet composition is how we expect to
satisfy one of the fundamental properties of language that have been recognized since the time of
von Humboldt: the ability to make infinite use of finite means.

2.2 Predicates linked to language

As a concrete example of a packet, consider the word black. It is the English realization of the
individual in the ontology that is used to represent the color black, (denoted as black) as opposed
to other colors such as red or titanium white. Like all colors, it is associated with a two-place
predicate that establishes a relationship between an entity that can have a color (tree leaves, cars,
etc.) and the specific color black. The predicate looks like this, where the type of object to which
the predicate can apply is restricted: it must include the type has-surface.

λxhasSurface[color_of(x, black)]

The object and the predicate together are the contents of the packet. When the parser scans black,
these packets are introduced into the situation.

Every predicate in the ontology must specify the word or fixed phrase that expresses it and their
linguistic properties.4 The knowledge engineer adding colors to his conceptual model must indicate
the word or phrase that names the color and that it has the syntactic patterns of a predicate adjective.
For C3, we do this using the notation for simultaneously defining semantic categories and their
realizations described in (McDonald, 1994).

2.3 Latent predicates

When a phrase is fully instantiated, as in “a black SUV”, the predicates receive values and establish
predications. For example, the value of the color property of this SUV is bound to black. The
meaning of substantive nouns or verbs will typically include a great many predicates, only a few

4. We use a Lexicalized Tree Adjoining Grammar for analysis and generation. A word’s linguistic properties are estab-
lished by indicating what TAG tree family or families it goes with. See (McDonald & Pustejovsky, 1985; McDonald,
1996).
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of which will be present in a text and therefor explicitly represented as predications in the minimal
model. The other predicates are latent. They may be relevant as the text continues; they may supply
default assumptions that drive implicatures; or they may simply remain part of the background
knowledge associated with the word; see §4.3.

In C3 we treat predicates formally as a kind of lambda variable. These variables are structured
objects that define a relationship between individuals of specific categories, and are constrained in
the range of values they can take, i.e. what the variable can be bound to; for details see (McDonald,
2000). This information is self-contained within the object that defines the variable – the category
of individuals it applies to, the restrictions on its possible values, and the default values that can be
assumed in the absence of actual ones.

For example, if the the participants of an event are physical objects then it is always the case that
the event happened at some location, even if we don’t know what that location is. This is the sort
of thing that latent variables are used for. When the analysis of our initial example had only gotten
this far: “a 14-year-old girl died,” we knew that the death must have happened at some location, but
we didn’t know what that location was. The location could still be referred to, but only indirectly:
“where the girl died” or “the place where the girl died.” Once the text continued, “. . . in the Kurdish
city of Sulaimaniya,” the latent variable that represented the location of the event was accessed and
bound to that city. Note that this narrows the category of the location to city, and we would say
“the city where the girl died.”

Pre-anchored latent variables In our implementation, a composite category (§2.6) defines all the
possible properties, relationships, and habitats that its instance individuals can have or be part of,
all implemented by lambda variables.

When we introduce a packet into the situation, this potential becomes accessible, even when
just a small part of it is present in the minimal situation model. It is accessible in that any later
explicit reference to a predicate that is latent in an individual’s composite category has already been
linked to the individual it applies to. We employ a wrapper around all variables, what amounts to
a programming trick, that permits C3 to create an instance of each variable (potential predication)
linking he individual it is predicated of instantaneously in one step, at the moment the individual is
introduced into the situation.

2.4 Frames and Habitats

Packets are C3’s building blocks. Most packets contain roughly the same amount of information
as we intuitively associate with a single word (black, cancel). But of course there are relational
structures that are considerably bigger, structures that should be instantiated as a single unit but
which have multiple parts and activities such as the representation of an airport, a government
building or a birthday party. Historically, these have been done as frames (Minsky, 1975).5 We have

5. Drawing on Bartlett’s notion of a schema, Minsky developed the concept of a frame in 1972 in reaction to Newell
and Simon’s book “Human Problem Solving”. Originally, frame theory emphasized the transformations that would
occur as perspectives changed or scenarios progressed There was a focus on frame recognition and repair to account
for variations. Action was tied to the creation of frames and to changes in their slot values via “attached procedures.”
Frames subsequently evolved into today’s RDF triple-stores and weakly expressive decision logics, in the process
losing most of their value as a representation of background knowledge.
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returned to something close to original conception of frames, but built from modern computational
tools.

We have added an organizing overlay to Minsky’s frames by adopting the notion of a habitat
(Pustejovsky, 2013a). This is an extension and deepening of the well-established concept of qualia
theory (pg. 144). We introduce a habitat into the situation all at once, but which aspect of it is in
focus (which gets priority in dictating interpretations and making inferences) depends on what is in
focus in the text being read, as we illustrate on page 145. The term “habitat” deliberately plays on
the ecological metaphor to guide intuition as to what should be included in a frame and what should
not.

2.5 Indexical Functional Variables

The contents of a situation reside in a web of relationships and possibilities, most of them coming
from the active habitats, others coming from the discourse relationships that structure the inter-
pretation of the text, including relations that keep track of partial information as the text is being
read. To represent this we use a set of indexical functional variables following the design used by
Phil Agre in his Pengi system (Agre, 1988) These variables designate constant, funtionally identi-
cal relationships within the processes of the system while their values vary transparently to fit the
moment-to-moment situation.

One of Agre’s examples is the variable the-cup-I-am-drinking-from, which gets bound to
whichever of the three cups that he kept in his office he was actually drinking from at the moment.
The things he could do with this cup were always the same, drink tea or use as a paper weight,
while the identity of the cup would vary. The actions the system takes are stated once in terms
of indexical variables – the presuppositions and significance of a functionally designated object is
always the same. Actions are not dependent on particular values only on the function those values
serve. Their actual, runtime values are managed automatically and transparently according to the
situation at hand.

Pegs For Agre, the deictic variables were managed by the Pengi perceptual system. For us they
are managed by the parser and identify the structure it has observed and the relationships it expects.
In most instances an indexical such as theme or new will be bound to specific, typed individual, but
since we are updating the situation incrementally as each word is scanned, there are always moments
where a phrase is incomplete, its head and type not yet identified, but we still need to establish its
impact on the situation. To do this we are using Susan Luperfoy’s notion of a peg (Luperfoy, 1992).

For example, at the point in the parse where we have read just “a 14-year-old” the indexical
variable current-np-referent is bound to a peg that was created when the parser scanned the
“a” and recognized that it was starting a noun phrase that would have a referent. The peg is a standin
for the eventual referent, and provides a place to accumulate predications. In this instance, we know
that whatever this referent may turn out to be, it is something for which it makes sense to have an
age measured in years. The peg’s properties are transferred to a regular individual once the head of
the NP (girl) has been scanned. See §4.2 for another example.

It is an interesting psycholinguistic question whether the earlier context has established the
overall topic and narrowed the semantic field from which the referent of an incomplete phrase like
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“14 year old” will be drawn. The news article that this excerpt appeared in had “bird flu” in its
title. Anyone familiar with the subject will know what types of individuals will be discussed, and
given the age phrase will presume that it will be a person. In other contexts, for example at a
bar, the presumption might be that the 14 year old was a single malt scotch. Whether people use
such pre-established semantic fields or wait a moment to hear the head word could be tested in a
well-designed experiment.

2.6 Representational principles and their consequences

We have arrived at a set of principles for the representation of world knowledge in C3. These are an
overlay on an otherwise conventional system of categories and properties in a specialization lattice.
The aim is to provide a flexibile link from language to the ontology while retaining the economy of
only having to state axioms and relation types once.

• Only add a category to the ontology (T-Box) if it makes a contribution, e.g. it adds predicates,
state-change affordances, presuppositions, or defaults.
• No representation without realization – Every category should correspond to some word, phrase,

feature, or syntactic construction.
• Predicates are only defined once. They may be restricted to different values at different levels

in the category lattice but they retain their identity.

In a conventional representation there is a substantial distance in the specialization lattice between
the particulars that appear in a text, such as a sport utility vehicle, which will be close to the bottom,
and what we know about the vehicle, e.g. that it is a container, which is stated at a high level and
applies to a great many things besides SUVs. It is difficult to use language in such a system. Our
need to put have packets for domain-specific words that refer to general predicates and affordances
(our lexicalized pragmatics) cannot be easily accommodated.

Unique variables We chose instead to separate the realization facts (what words and construction
are used) from the axiomatic facts (what predicates and operations apply and what follows from
them). An SUV acts like a container because its category literally incorporates the container

category and uses the container’s variables to express the affordances available to its passengers and
to state facts such as when one passenger gets out there is one fewer inside.

We do this by making all variables (predicates) unique. They are defined once, as one object
in the representation, on a category as far up in the lattice as possible for maximal application.
On more specific categories the variable will usually be restricted. For example the contents

variable of container is defined there as just a collection of an unknown number of entities of
unknown types. When we move down to, say, passenger-transporter (see pg. 146), the type
of the collection is restricted to person. On a particular type of passenger-transporter, say
airline, the restriction on the variable will be further restricted to incorporate the different roles
that the people on an airline have.

The vocabulary, the realization facts, is stated against these restrictions. Any packet that includes
container adds to the situation model that fact that its contents are in one of two states, expressible
as being in (inside) or out (outside) of the container, and have the affordance of being able to move
between these states. But we say that we take or pick out jelly beans from a jar (they cannot move
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on their own). We watch a squirrel climb out of a garbage can (they can move on their own, and the
movement involves ascending a hight). When the variable is restricted to the category person we
refer to to them as passengers or by their role (driver, pilot, stewards). and they go into or get out
of the container.

Pre-cached, “composite” categories Allowing different local restrictions on the same predicate
object lets us achieve an economy of expression for axioms, which is essential for working with
large ontologies, while retaining flexibility in how to define packets of the vocabulary since realiza-
tion facts can refer to restriction categories at very different levels in the ontology. But this comes at
a cost, since any word with a rich meaning will have a packet that introduces dozens if not hundreds
of latient variables (particularly for habitats) which will entail including a proportional number of
categories.

We make this manageable by using what we call composite categories. We define them as a
conjunction of regular categories. We then pre-cache the categories’ variables (with their restric-
tions) to create a single computation object. The result has the behavior we would get by using
ordinary inheritance, but with none of the costs of traversing the lattice to collect the variables and
apply the restrictions. In the implementation, a composite is just a class with mixins for each of the
categories it includes.6

While a a composite category is often just collecting the categories that are above it in the
hierarchy, there is no requirement to do so. Categories from very different parts of the ontology can
be incorporated into a single composite. This makes for an ontology that is easier to maintain, since
there is no requirement to force everything into a single lattice with coherent lines of inheritance.

Composite categories can be incorporated into other composites. When this happens, the incor-
porated composites are treated like macros that are unpacked inline and repackaged as a new CLOS
class.

2.7 The C3 Architecture

Figure 1 shows the basic framework of C3 using the example discussed in next section. Solid blue
lines from the text trace the activation path up from the first part of the text to add packets (in green)
or larger habitat frames (in blue) and become part of the situation as a whole (outer box). Dotted
lines show later additions to the situation (upward arrows) or inferred interpretations made by the
situation (downward arrows). Orange arrows within the situation sketch relationships developed
among the packets by binding variables.

We can summarize C3’s workflow as follows. It begins with the perceived input. In our research
this is the sequence of words in a text. Words are interpreted as they are reached by the parser and
contribute packets of content of different sizes and function to a growing situation. This leads to
the instantiation and assembly of highly structured sets of prototype relations and events, antici-
pated scenarios, and specific and prototypical individuals, places, etc. The situation then governs
the expectations and interpretations of words and phrases as the analysis continues.

6. We work in Lisp, and make heavy use of the multiple inheritance capabilities of the Common Lisp Object System
(CLOS); see (Gabriel, White, & Bobrow, 1991).
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Figure 1. The C3 Architecture.

3. Air travel and inference

We will illustrate how our architecture works by describing how the situation is established and
drives inferences during the comprehension of the following text.7

“Most flights from the Luis Munoz Marin Airport in San Juan to the Leeward Islands
were canceled Monday, leaving about 550 people stranded at the airport.”

If it was read for just its literal content, as today’s language understanding systems would,8 the
result would leave many questions open. In particular,

• Who are these people?
• Why are they stranded?

7. This is a self-contained excerpt from a news article about the impact of Hurricane Earl on Puerto Rico (The New
York Times, August 31, 2011).

8. The ongoing work of James Allen (Allen et al., 2007), and Peter Clark (Clark, Harrison, & Thompson, 2003) is a
notable exceptions to the generalization that today’s parsers read just for literal content.
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3.1 Lexical structure

Outside of a specific context, most high frequency words are ambiguous. Even once a word sense
has been determined there are still differences in logical perspective to sort out or metonymies to
decode. We describe our approaches to these problems in this section.

Simple ambiguity Consider the word flights, which has different meanings in different domains.
It could refer to a flight of stairs or be part of a fixed phrase like flight from stocks; it could refer to
a quantity of beer or champagne. It could be a nominalization of flee. A fully populated language
understanding system would have all of those reading and more. In the context of this example it
of course refers to an airline flight, but we have to establish that fact before we can instantiate the
air-travel habitat and activate its affordances.

We know from psycholinguistic studies that all of the senses of a polysemous word are active
when the word is read, and that all but the intended sense drop away shortly afterwards (Marslen-
Wilson, 1973). We get this behavior in C3 by using the approach that Sparser is already using. Each
kind of ‘flight’ that C3 knows about (for which is has a packet in its lexicon) has its own projection
to the grammar, and will introduce its own semantically-labeled reading (its own edge for the word
in Sparser’s chart) when the word is scanned, e.g. airline-flight and fight-amount. This
mirrors the observed immediate activation of all the word’s senses.

In such cases Sparser uses a simple disambiguation policy. Only the edge that extends through
composition with the phrases around it has its meaning incorporated into the situation. The the
others are ignored. In this example, the others are ignored at the moment the word from is scanned
because that preposition is part of the rule pattern that applies to ‘flights’ as movement.

Lexical entries in the generative lexicon In Pustejovsky’s Generative Lexicon theory (Puste-
jovsky, 1995; Pustejovsky, 2013b), the lexical entry for a content word (as opposed to a grammat-
ical function word such as most or from) encodes three kinds of information (in addition to basic
typing):

• Its Argument structure, which spells out what arguments the word takes, how they are realized
syntactically and govern semantic role selection.
• Its Event structure. For verbs and many nominals, we can categorize the class of event it refers

to (state, process, transition) and how it structures its implicatures (Pustejovsky, 1991).
• Its Qualia structure, the basis of logical polysemy, implicated in coercion and type shifting.

The argument structure is integrated into the rule sets of Sparser’s grammar and helps with the task
of simple disambiguation. The event structure is part of the habitats that are added to the situation
and provides a scaffolding for anchoring events and action sequences in time. The qualia structure
organizes the applicable predicates and affordances.

Qualia and Logical polysemy The Qualia consist of four basic roles, each of which can be seen
as answering a specific question about the object it is associated with. Each contributes a comple-
mentary set of latent predicates to a word’s meaning.

• Formal Roles encode taxonomic information about the lexical item (the is-a relation); What
kind of thing is it, what is its nature?
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• Constitutive Roles: encode information on the parts and constitution of an object (part-of or
made-of relation); What is it made of, what are its constituents?
• Telic Roles encode information on purpose and function (the used-for or functions-as

relation); What is it for, how does it function?
• Agentive Roles encode information about the origin of the object (the created-by relation);

How did it come into being, what brought it about?

Most words have alternative readings that are characterized by different qualia: the newspaper you
read (telic), the one you spill coffee on (constitutive), the one whose editorial opinions you disagree
with (agentive). This distinction is referred to as logical polysemy (Pustejovsky & Boguraev, 1993).
Once a content word has been narrowed to the domain where it has a specific meaning (simple
disambiguation) the next step is to determine its qualia role, to disambiguate it logically.

The qualia role that applies in a particular instance cannot be determined independently of the
rest of the context. If the text was My flight just landed it would be the constitutive role since we
are talking about the airplane that the flight used and only physical things can land. If our flight
was rescheduled it would be the agentive role. All of these alternatives are part of the air-travel
habitat — a frame that factors into different parts (incorporated habitats) according to which qualia
is involved. In this instance of flight,9 it will be the telic role and it will link to the portion of the
habitat that organizes knowledge about flights as conveying people from place to place.

Metonymy An important kind of inference is decoding what is actually meant when a general
reference is used in place of a specific one. When “the White House issued a statement” it is not the
building that did it but some spokesman and the identity of the spokesman is unimportant. This in
happening in our example. The flights are “from the Luis Munoz Marin Airport in San Juan to the
Leeward islands . . . ”

The from . . . to . . . construction occurs in many situations, not just motion. In another context
this could just as well describe movement in stock prices. The fact that we are in an air-travel

situation imposes a interpretation on the from–to arguments that they refer to airports. The airport
in San Juan is given explicitly. The destination, however, is given as just a named location. An
inference is required to convert from that to an airport. (Note that the writer could equally well have
just said “from San Juan” in which case both references would require a metonymic interpretation.)
Here are the steps that C3 would follow to get an airport from a place. Stated in conventional form,
the rule would be something like this. Given this axiom (meaning postulate):

�[∀f :flight ∀l:loc[destin(l, f)→ ∃a:airport[at(a, l) ∧ destination(a, f)]]]

we can devise a coercion operation such as this:

λf :flight λl:loc[destin(l, f)] coerce
===⇒ λf :flight λl:loc∃a:airport[destin(l, f) ∧ at(a, l)]

In GL terms, we are coercing the named location the Leeward Islands into the airport that is asso-
ciated with that location. In C3 we can deploy that inference efficiently without needing search or

9. Recall that the context is “Most flights from the Luis Munoz Marin Airport in San Juan to the Leeward Islands were
canceled Monday . . . ”
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matching because we can use the old idea of attached procedures. Within the air-travel habitat,
the origin and destination variables of a flight can only be bound to airports. This is already the case
for the origin, but the destination is a place rather than an airport. Binding the destination to a place
triggers a procedure to identify the needed airport in the situation. If it cannot be found then the rule
simply creates a representation of ‘the airports in the Leeward Islands’ and adds it to the situation
as the value of the destination.

3.2 Habitats, actions, and composition

Airports have control towers, runways, taxiways, gates, terminals, etc. These are all available in the
airport habitat. As we described in §2.4, these are entities and relationships that the habitat knows
about, but they are latent rather than part of the minimal model actually in the situation.

The principal activity at airports is air-travel, and if we ignore its personal aspects (making
reservations, getting to/from the airport, buying food, shopping, etc.), the most salient aspect of air-
travel is the flights. Flights are also habitats. They have a plane (the equipment), a crew, passengers,
baggage, food, etc. They are run by particular airlines, have a flight number, and travel from one
airport to another.

In the telic reading of flight, the habitat includes a script that lays out the typical sequence of
events and activities that constitute air travel. Airplanes are containers and they can move. Like any
moving container, when they move (taxi, take off, fly, land) they convey their contents with them
from their starting point to their destination. There are enough of these passenger-transporters in the
world that they form a useful composite class: cars, buses, trains, bicycle-pulled carts, trucks, etc.
This ensures that their common core is shared, particularly for our purposes the words that accrue
to this level, such as passenger.

The interpretation of flight is as a process. There is a state of affairs that holds before this process
starts and a different one after it ends. The principal difference between these two is in the location
of the airplane and its contents: the passengers, their baggage, the crew. Before the flight leaves
they are at the origin airport, afterwards they are at the destination airport. Any habitat like flight
that involves scheduled process comes with the default assumption that once the process has started
it will continue until it ends.

To represent the content of the first part of this text, we instantiate a flight habitat with values
for the variables that we know. This adds to the situation a collection of an indefinite number of
individual flights, where each of these otherwise unidentified flights originates in San Juan and
terminates in an airport in the Leeward Islands. Each of these flights has a carrier and a flight
number, a crew and a passenger manifest, but these are latent properties, just as we don’t know the
actual number of flights in the collection.

Canceling movement The meaning of the word cancel is an operator, It modifies the situation
rather than simply adding to it. Cancel is an operator over processes. Its syntactic configuration (as
main verb) establishes that it is predicated of the value of functional variable syntactic-subject,
i.e. the flights. Since the only qualia of flight that involves a process is its telic function of trans-
porting its passengers from one place to another, that aspect of the flight habitat becomes central
to the situation.
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Applying the operator cancel to the flights cancels this process. To cancel a flight means that
it does not start (the flights don’t take off). This modifies the situation to reflect that fact that the
conditions that held before the process would have started still obtain: the passengers who would
have been on the flights are still at the San Juan airport, as are the crews and the planes.

Situation-driven binding In the last portion of this example we have a result clause

“leaving about 550 people stranded at the airport.”

Given its form, the syntactic relation of this adjunct to its main clause tells us that this state of affairs
(the stranding of the people) happened because of the event in the main clause (the cancelation of
most of the flights). Being stranded is a habitat in itself, associated with air travel but not a part of
it per se in the way that, say, losing one’s luggage is. The meaning of stranded is that there was
an intention to move that has been blocked: The path of the passengers’ expected futures has been
interrupted. Note that the airport employees are not stranded, because they have a different role in
the air-travel habitat, i.e., they work at the airport.

Inferences should be guided by what is salient in what is perceived – the text that C3 is inter-
preting and the situation model created for it. The cancelation brings into focus within the situation
those elements that were most affected by it: the passengers, the air crews, and any other individuals
whose intended future path of events was shifted. This salience makes it simple to interpret the two
definite references in the result clause. Given the context provided by this situation, we can bind
the referent of the airport to San Juan’s Luis Munoz Marin airport because the flight habitat has
already created properties for two airports (origin and destination). The origin airport is the more
salient of the two because it is the one impacted by the cancelation.

Similarly, the 550 people are resolved to be the only people who are made salient by the cance-
lation: the passengers and crew who would have been on the flights that did not take off — did not
follow their intended, default future path.

4. A worked example

At SIFT we have access to a set of logs of actual text-chat collected from an Intelligence, Surveil-
lance, and Reconnaissance team during the Empire Challenge 2010 (EC10) military exercise.
These are from a GBOSS team (Ground-Based Operational Surveillance System) that was com-
posed of three camera operators, an analyst, and a coordinator, all communicating over Internet
Relay Chat reporting their on the movements and activities of the other players in this live Army
exercise in a simulated set of Afghani villages. This excerpt illustrates the sort of gap that we are
focusing on. Camera operator Heavy2 is reporting on an event involving a car ‘of interest’ in the
Wakil village that he is observing.

9. We have permission from the Office of Naval Research to use these Ground-Based Operational Surveillance System
(GBOSS) team transcripts, as well as similar EC10 tactical operations transcripts of sensor operators reporting status
and commanders directing them.
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Line Time Message
72 [19:51] <Heavy2> black ford suv has entered wakil
73 [19:52] <Heavy2> two people are dismounting

Table 1. GBOSS team chat excerpt from EC10.

It is obvious to us where the people came from. In this section we layout how we make it equally
obvious to a computer program.

4.1 The initial situation

Line 72 of the chat transcript, entered at 19:51 pm, is the first time that observer Heavy2 has typed
anything for several minutes. This speaker shift has cleared the situation of any active habitats or
facts, and moved their content to a passive store from which they can be reactivated when mentioned
again. In this case, the “black Ford SUV” was already identified and designated as a ‘vehicle of
interest’ earlier at 18:27, and at 18:50 there was the report “three guys have gotten in to black ford
suv at wakil.” Not only is there a known individual to add to the situation (rather than building a
new individual), but we already know something about it.10

SUV-1: container.contents = collection(count > 3, type = person)

The discourse history established that The SUV is value of the given indexical variable. The value
of the new variable is the fact that it has entered the village. This re-introduces this already known
village in to the situation model, along with the fact of the event, but nothing else. We know the
present location of the SUV (it is part of the minimal model), but we do not know anything about
its previous location except that it has one: “where the SUV was before it entered Wakil.”

We do not know anything else about the SUV, not even whether it has stopped moving. In
the actual world of the observer, all of this is an esablished part of reality. It approached along a
particular road at a particular angle to the viewer. The sun was shining and created shadow of a
particular size. The buildings in Wakil are made of concrete and painted some color. While all of
this is true, only what we actually know from the text is present in the situation. The rest is latent.

4.2 Expectations

For C3, Sparser parses texts incrementally word by word so as to get the greatest amount of leverage
from the situation. From line 73, reported a minute after the report about the SUV, it first reads the
word two. As a nominal premodifier, that deploys a peg and its packet establishes that there is a
collection of size two, but that is all we know at that moment. It could have been that two windows
on the SUV were opened, or two of its doors.

Peg(x): collection(count = 2, type = x)

Upon reading people, the head of the NP, the peg is replaced by an individual representing a col-
lection of two people, but again we know nothing more. We do have an expectation however. The

10. The expressions used in this section are purely notional for purpose of illustration. In C3’s implementation their
equivalents are configurations of type-objects linked by pointers and organized by indexical-variables bound by the
situation object. Describing their actual elements and organization cannot be done is the space available.
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people must have been somewhere before this even if we don’t yet know where. Since some things,
like the locations of the objects of discourse, are essential to understanding. (physical objects don’t
just appear in a puff of smoke), this information gap leads to an expectation that we will either be
told the location or should assume one given the available evidence.

people-2: type = collection-2, physical-object.location = ?)

4.3 Composition

Then Sparser reads the verb group “are dismounting.” It adds the packet for dismount to the situation
and notes that this is an ongoing action.

dismount = transition.inprogress„ movement.from = high, movement.to

= low(ground) movement.actor = v:subject

From the syntactic construction, it knows that the collection of people supplies the obligatory argu-
ment to dismount: who is doing the action.

Dismount is a movement. Every instance of a movement comes with predicates for where its
participants (the two people who are moving) were before the action and where they are after it.
None of these values have been given explicitly, though a firm default for dismount is that the final
location is the ground. (One dismounts from a horse or a piece of gymnastics equipment.)

To establish the value of their prior location (where they dismounted from), we use what amounts
to anaphoric reasoning: namely, what are the locations that we know about given the present situ-
ation? This gives us the village and the SUV, but the SUV should be preferred because the thing
one dismounts from must be close by (compare “two people are walking up to it”) and the SUV is
salient because it is the value the discourse theme indexical because is is a ‘vehicle of interest.’

during.before(dismount-1): people-2.physical-object.location = SUV-1
dismount-1.movement.from = SUV-1

This binding furthermore has significant side effects. To be dismounting from the SUV presupposes
that it is stopped, so we coerce the motion of the SUV in 72 to a ‘stopped state.’ (Compare secret
service agents dismounting from the presidential limo during a motorcade.) If two people have left
the SUV, qua container, then the number of people known to be in the vehicle (at least four) is
reduced by two.

What has happened is that the introduction of the dismount to the situation initiated a limited
inference process to identify the location the people dismounted from. Integrating the dismount

with the established enter or the SUV provides a ‘people-containing’ location to the inferential
search (‘inside the SUV’). If there had not already been such a location in the current situation, the
search would not go any further, and just posit that the location exists and wait for more information
to come in, just as with our initial example of the Iraqi girl.
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5. Conclusion

In this paper, we have presented a computational architecture for a new way to deploy and exploit
the knowledge and inferences in a word’s meaning. Much of it is simply reviving techniques that
had gone out of style, but there are also innovations designed to increase efficiency and semantic
transparency.

• Treat situations computationally as the sum of the understanding of what has been said, along
with what is implied and what might follow §2.1.
• Organize the meaning of words as “packets” of model-level content along with overt and im-

plicit predications §2.2.
• Use a representation that enables constant-time access to the knowledge that is latient in the

situation §2.3.
• Provide function-based landmarks to the content of a situation to permit one-step application of

anaphoric-style inferential gaps §2.5.
• Separate the linguistic realization from the statement of the axiomatic facts by defining predi-

cates just once and stating wording constraints over restrictions on them §2.6.

Clearly, there is much more to be fleshed out, and it is difficult to evaluate our proposal without more
elaborate and more extensive modeling. But the outline presented here suggests a specific way in
which people deploy their linguistic and general knowledge jointly, to understand discourse, and we
invite those who think that there is merit in our goal — to understand how people can deploy their
knowledge through language as quickly and effortlessly as they walk or breathe — to an extended
conversation about how this is possible.
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